Note

On the Convergence of Standard and Damped Least Squares Methods

Introduction

While the use of least squares minimization is quite commonly used, the NewtonRaphson algorithm often fails to converge or converges very slowly for nonlinear problems. The convergence is known to become poorer with increasing nonlinearity, and an important increase in the quality of the initial estimate of the parameters is needed to reach the solution. In problems where parameters appear in highly nonlinear functions of exponential, logarithmic, or hyperbolic types, there is a strong need for a better understanding of the reasons for this divergence phenomenon and for methods to overcome it and ensure convergence.

Least Squares Method

Let $\epsilon(X, t)$ be the discrepancy at point t between the experimental value $y_{\mathrm{e}}(t)$ and the value of the approximation function $y(X, t)$. The method aims to minimize the least squares criterion function,

$$
\begin{equation*}
\phi(X)=\int[\epsilon(X, t)]^{2} d t \cdots \int\left[y_{\mathrm{e}}(t)-y(X, t)\right]^{2} d t, \tag{1}
\end{equation*}
$$

with respect to the vector of parameters X (integral signs being taken in the Stiljes sense), or to solve the system

$$
\begin{equation*}
\delta \phi / \delta x_{j}=0, \quad \forall j, \tag{2}
\end{equation*}
$$

which is equivalent to (1) in any domain where ϕ is unimodal.
First approximation. System (2) is expanded to the first order in the Taylor sense to give

$$
\begin{equation*}
-2 \int\left[\epsilon(X, t)-\sum_{i} \frac{\delta y}{\delta x_{i}}(X, t) d x_{i}\right]\left[\frac{\delta y}{\delta x_{j}}(X, t)+\sum_{i} \frac{\delta^{2} y}{\delta x_{i} \delta x_{j}}(X, t) d x_{i}\right] d t=0, \quad \forall_{j} . \tag{3}
\end{equation*}
$$

Second approximation. In (3) we set

$$
\left(\delta^{2} y / \delta x_{i} \delta x_{j}\right)(X, t)=0, \quad \forall i, j .
$$

This second approximation is equivalent to the following statement. y is approximated in the neighborhood of $y(X, t)$ by a function linear with respect to the set of x_{j} (cf. Geometric Properties), which has the same first derivatives at the point (X, t).

The system then takes the form

$$
\begin{equation*}
\sum_{i}\left[\int \frac{\delta y}{\delta x_{j}}(X, t) \frac{\delta y}{\delta x_{i}}(X, t) d t\right] d x_{i}=\int \epsilon(X, t) \frac{\delta y}{\delta x_{j}}(X, t) d t, \quad \forall_{j} \tag{4}
\end{equation*}
$$

or, in a matric form, $B d X=E$, with

$$
\begin{equation*}
b_{i j}=\int \frac{\delta y}{\delta x_{j}}(X, t) \frac{\delta y}{\delta x_{i}}(X, t) d t ; \quad e_{j}=\int \epsilon(X, t) \frac{\delta y}{\delta x_{j}}(X, t) d t . \tag{5}
\end{equation*}
$$

Note. When a discrete summation is used, it is customary to define

$$
\begin{equation*}
a_{k j}=\left(\delta y / \delta x_{j}\right)\left(X, t_{k}\right) ; \tag{6}
\end{equation*}
$$

then $B=A^{\mathrm{T}} A$ and $E=A^{\mathrm{T}} \epsilon$, which provides a simple means to compute B and E.

Geometric Properties

We define

$$
\begin{equation*}
\phi=\int \epsilon^{2} d t \tag{1}
\end{equation*}
$$

thus

$$
\begin{align*}
\frac{\delta \phi}{\delta x_{i}} & =2 \int \epsilon \frac{\delta \epsilon}{\delta x_{i}} d t, \\
\frac{\delta^{2} \phi}{\delta x_{i} \delta x_{j}} & =2 \int \frac{\delta \epsilon}{\delta x_{i}} \frac{\delta \epsilon}{\delta x_{j}} d t+2 \int \epsilon \frac{\delta^{2} \epsilon}{\delta x_{i} \delta x_{j}} d t . \tag{7}
\end{align*}
$$

The resolution of $B X=E$ is equivalent to the minimization of the quadratic form

$$
\begin{equation*}
F(X)=\frac{1}{2} X^{\mathrm{T}} B X-X^{\mathrm{T}} E \tag{8}
\end{equation*}
$$

the derivatives of which are, at the point $X=0$,

$$
\begin{align*}
\frac{\delta F}{\delta x_{i}} & =(B X-E)_{i=0}=-\int \epsilon \frac{\delta y}{\delta x_{i}} d t=\int \epsilon \frac{\delta \epsilon}{\delta x_{i}} d t \\
\frac{\delta^{2} F}{\delta x_{i} \delta x_{j}} & =b_{i j}=\int \frac{\delta y}{\delta x_{i}} \frac{\delta y}{\delta x_{j}} d t=\int \frac{\delta \epsilon}{\delta x_{i}} \frac{\delta \epsilon}{\delta x_{j}} d t \tag{9}
\end{align*}
$$

The geometric interpretation follows by comparing $F(X)$ and $\frac{1}{2}[\phi(X)-\phi(0)]$; the surface ϕ, known only in $X=0$, is replaced by a paraboloid $2 F+\phi(0)$ with the same tangent plane and the same curvature in any plane containing $X=0$; the minimum of the paraboloid is them searched for (Fig. 1).

Fig. 1. Surface ϕ, the minimum of which is shown by solid lines. The approximation paraboloid is the dashed line. The figure shown X_{min}, the true minimum; X_{0}, the computed X; and $\phi\left(X_{0}\right)$, the corresponding ϕ. The starting point of the iteration is $(0,0)$ with the ϕ_{0} value for the criterion function.

Properties of the B Matrix

(1) B is a real symmetric matrix. This clearly results from Eq. (5),

$$
b_{i j}=b_{j i}
$$

(2) Diagonal elements of B are positive or zero (Eq. (5)):

$$
b_{i i}=\int\left(\delta y / \delta x_{i}\right)^{2} d t
$$

(3) B is nonnegative definite.

Let X_{0} be a solution of $F(X)$ minimum and $X=X_{0}+V$; then

$$
\begin{aligned}
F(X) & =\frac{1}{2}\left[X_{0}+V\right]^{\mathrm{T}} B\left[X_{0}+V\right]-\left[X_{0}+V\right]^{\mathrm{T}} E \\
& =\frac{1}{2} X_{0}^{\mathrm{T}} B X_{0}+\frac{1}{2} V^{\mathrm{T}} B X_{0}+\frac{1}{2} X_{0}^{\mathrm{T}} B V+\frac{1}{2} V^{\mathrm{T}} B V-X_{0}^{\mathrm{T}} E-V^{\mathrm{T}} E \\
& =F\left(X_{0}\right)+\frac{1}{2}\left(X_{0}^{\mathrm{T}} B V+V^{\mathrm{T}} B X_{0}\right)+\frac{1}{2} V^{\mathrm{T}} B V-V^{\mathrm{T}} E
\end{aligned}
$$

Since B is symmetric, $X_{0}^{\mathrm{T}} B V=V^{\mathrm{T}} B X_{0}$, so that

$$
F(X)=F\left(X_{0}\right)+\frac{1}{2} V^{\mathrm{T}} B V+V^{\mathrm{T}}\left(B X_{0}-E\right),
$$

and $B X_{0}-E=0$ since X_{0} is a solution of $F(X)$ minimum; so

$$
V^{T} B V=2\left[F(X)-F\left(X_{0}\right)\right] \geqslant 0,
$$

since $F\left(X_{0}\right)$ minimizes $F(X)$. Moreover, B can always be written as

$$
\begin{equation*}
B=T^{\mathrm{T}} S T \tag{10}
\end{equation*}
$$

where T is the orthogonal matrix of eigenvectors and S is the diagonal matrix of the eigenvalues s_{i} (all s_{i} 's being real, since B is real symmetric). If there is a vector $V \neq 0$ such that $V^{\mathrm{T}} B V=0$, then $(T V)^{\mathrm{T}} S(T V)=U^{\mathrm{T}} S U=\sum_{i} u_{i}{ }^{2} s_{i}=0$, which shows that at least one s_{i} is zero. Then any vector $X=X_{0}+k V$ is a solution of the system and $F(X)$ has another parabolic direction in the X space.

Minimization Methods of Levenberg and Marquardt-Meiron [1, 2, 3]

The aim of these methods is to modify the quadratic form F to bring its minimum nearer of the minimum of ϕ, while keeping, as much as possible, the properties of B. They use the fact that at least the gradient is known to be a direction where ϕ is decreasing.
These modifications are $(\lambda \geqslant 0)$:

$$
\begin{equation*}
B_{\lambda}=B+\lambda I \quad \text { (Levenberg) } \tag{11}
\end{equation*}
$$

$\operatorname{Diag}(B)^{-1 / 2} B_{\lambda} \operatorname{Diag}(B)^{-1 / 2}=\operatorname{Diag}(B)^{-1 / 2} B \operatorname{Diag}(B)^{-1 / 2}+\lambda I \quad$ (Marquardt), (12)

$$
\begin{equation*}
B_{\lambda}=B+\lambda \operatorname{Diag}(B) \quad \text { (Meiron). } \tag{13}
\end{equation*}
$$

It is clear that
(1) Meiron's and Marquardt's transformations are identical;
(2) Marquardt's transformation is a Levenberg's transformation in a parameter space normed by $\operatorname{Diag}(\mathrm{B})^{-1 / 2}$ (if $\left.b_{i i} \neq 0, \forall i\right)$.

So we can systematically reduce the study to that of Levenberg's method whenever all $b_{i i}$'s are nonzero.

Properties of the Matrix $\boldsymbol{B}_{\boldsymbol{\lambda}}$

Since the matrix B can be written as $T^{\mathrm{T}} S T$ where T is the orthogonal matrix of eigenvectors, Eq. (11) becomes

$$
\begin{equation*}
B_{\lambda}=T^{\mathrm{T}} S T+\lambda I=T^{\mathrm{T}} S T+\lambda T^{\mathrm{T}} T=T^{\mathrm{T}}(S+\lambda I) T \tag{14}
\end{equation*}
$$

Hence, the matrix B_{λ} has the same eigenbase as B and its eigenvalues are $s_{i}+\lambda$; but the s_{i} values are positive or zero, since the quadratic form associated with \boldsymbol{B} is nonnegative definite; the eigenvalues of B_{λ} are hence strictly positive for $\lambda>0$, and the associated quadratic form is positive definite.

Cases of Singularity for B and Consequences in the Various Methods

We shall call "local" singularities those occurring for particular choices of the vector of parameters X, and "intrinsic" those.occurring for any X.

The singularities of B put a stop to the standard least squares method; two types of singularities can be distinguished.
(1) There is a subspace P of the parameter space X such that

$$
\sum_{x_{j} \in P} \mu_{j}\left(\delta y / \delta x_{j}\right)(X, t)=0, \quad \forall t \quad \text { with } \quad \int\left[\left(\delta y / \delta x_{j}\right)(X, t)\right]^{2} d t \neq 0, \quad \forall j
$$

Then, all the parameters of the subspace P are not simultaneously discernible; or, in other words, there is an infinity of vectors X, solutions of the minimization.

If the singularity is local or intrinsic, Levenberg's or Marquardt-Meiron's methods still lead to a solution since the linear dependence of the lines of the matrix B is destroyed in B_{λ}. If the singularity is a local one, the normal convergence process will start again when X has left the locus of singularities; if the singularity is intrinsic, at least one parameter is not independent of the others; the computed solution will minimize ϕ but will not be the only one because of the ill choice of parameters.
(2) There is at least one parameter x_{k} such that

$$
\left(\delta y / \delta x_{k}\right)(X, t)=0, \quad \forall t ;
$$

then y is independent of x_{k} for the choice of parameters X. In this case, we have to study the methods separately, since Levenberg's method adds a λ to the diagonal term and leaves no singularity, Meiron's method leaves the k th line equal to zero, and there is no possible normalization in Marquardt's method since

$$
b_{k k}=\int\left[\left(\delta y / \delta x_{k}\right)(X, t)\right]^{2} d t=0
$$

Yet, it must be considered that
if the singularity is intrinsic, y is independent of x_{k}, which makes this parameter meaningless;
if the singularity is local, a minimum in x_{k} is reached. It seems consistent not to change x_{k}, and since $b_{i k}=0, \forall i$ and $e_{k}=0$, one just needs to set $b_{k k}=1$. The k th equation of (V) is $d x_{k}=0$; the other equations are independent of $d x_{k}$ since $b_{k i}=0$ and can be solved if there is no other such singularity; otherwise, the same process will be repeated.

Note. Even very simple approximation functions y may exhibit such singularities, which make their linearized approximation from the first derivatives give a singular B matrix. For instance, let us consider

$$
\begin{aligned}
y & =x_{1} e^{x_{2} t}+x_{3} \\
\delta y / \delta x_{1} & =e^{x_{2} t} \\
-\delta y / \delta x_{2} & =x_{1} t e^{x_{2} t} \\
\delta y / \delta x_{3} & =1
\end{aligned}
$$

Let $x_{2}=0$; then $\delta y / \delta x_{1}-\delta y / \delta x_{3}=0$, a singularity of the first type.
Let $x_{1}=0$; then $\delta y / \delta x_{2}-0$, a singularity of the second type.
Though the y function is quite elsewhere, whenever the result of an iteration step leads to a solution in a vicinity of $X_{1}=0$ or $X_{2}=0$, the standard least squares method meets a nearly singular matrix (thus a very ill-conditioned system for inversion), and gives a poor convergence or a divergence in the iteration process.

Hence, the standard least squares method must not be used for nonlinear problems without a careful examination of the possible errors arising from local incompatibility between the approximation function y and the basic assumptions of the method.

Locus of The Solutions in the X Space

The hyperquadratics of the X space defined by

$$
F_{\lambda}(X)=\frac{1}{2} X^{\mathrm{T}} B_{\lambda} X-X^{\mathrm{T}} E=0
$$

form a linear punctual sheaf, the basic hyperquadratics of which are

$$
\begin{aligned}
\frac{1}{2} X^{\mathrm{T}} B X-X^{\mathrm{T}} E & =0, \\
\frac{1}{2} X^{\mathrm{T}} I X & =0 .
\end{aligned}
$$

The solutions of the minimization of $F_{\lambda}(X)$ are the centers of the hyperquadratics. Their locus has, for asymptotic directions, those centers which make the poly-
nomial of the highest degree terls equal to zero. The locus is also the axis of the hyperparaboloids in the sheaf, defined by the nullity of the determinant associated to B_{λ}, which is an algebraic equation of degree n (equal to the number of parameters), and with all its roots real, $\lambda=-s_{i}$ (cf. properties of the matrix B). Hence they are the directions of the eigenvectors of B. These eigenvectors form an orthogonal base of the normed space of X vectors.

Therefore, the locus of the centers is a skewed algebraic curve of degree n, with n real asymptotes. Since the s_{i} 's are positive or zero, all the solutions for $\lambda \geqslant 0$ are on a same continuous branch of the curve.

In a case with two parameters, hyperquadratics reduce to conics and the locus of the centers is the conic "of the nine points"; since the asymptotes are real, it is a hyperbola (Fig. 2).

In the same way, with three parameters, the locus of the centers of quadratics belonging to a linear sheaf is a skewed cubic curve.

Fig. 2. Minimization on two parameters (heptane-ethanol mixture from [5]) showing the hyperbola locus of the solutions. Dotted lines are iso- ϕ. The function is not defined for X_{1} or x_{2} negative. Underlined values are λ 's.

Selection of the Optimal λ Value

Marquardt uses the smallest value of λ giving a convergence; this leads to the largest iteration step, but not necessarily to the smallest ϕ_{λ}. It seems more advisable to select the value of λ leading to the minimum of ϕ_{λ}. To do this, the general shape of the curves $\phi_{\lambda}(1 / \lambda)$ must be considered. It is to be observed that ϕ_{∞} corresponding to an infinite λ is known to be the result of the previous iteration, and ϕ_{0} is the value obtained for $\lambda=0$ by the standard least squares iteration. In the simple case of a unimodal ϕ_{λ} function for $0 \leqslant \lambda$, three types of curves can occur (Fig. 3):
(3e) There is no minimum and the standard method is optimal;

Fig. 3. (a, b, c, d): iso- ϕ curves in a two-parameter space and locus of $X_{\lambda}(0<\lambda) ; 0$ is the origin of the minimization corresponding to λ infinite and $X_{\lambda}=0$. (e,f,g, h): corresponding $\phi_{\lambda}(1 / \lambda)$ curves. (a, c): standard least squares are optimal; (b, f): standard least squares converge, nonoptimal; ($c, \mathrm{~g}$): standard least squares diverge; (d, h): complex case where $\phi_{\lambda}(1 / \lambda)$ is not unimodal.
(3f) there is a minimum and an optimal λ value, though the standard least squares still converge since $\phi_{\infty}>\phi_{0}$;
(3g) there is a minimum and an optimal λ value; since $\phi_{\infty}<\phi_{0}$ the standard least squares diverge.

If ϕ_{λ} is not unimodal, there is an optimal (zero or nonzero) λ, but the search will be much more complex.

One method to find the optimal λ is to approximate ϕ_{λ} by a function with p parameters, the minimum of which can be computed readily enough.

Two parameters can be determined by the conditions for λ infinite.
(1) $\phi=\phi_{\infty}$, which is known;
(2) $\left[d \phi / d(1 / \lambda)_{\infty}\right]$ is readily computable since the initial system, Eqs. (11) and (5), gives

$$
(B+\lambda I) X=E \quad \text { or } \quad X=(B+\lambda I)^{-1} E,
$$

and derivation with respect to $1 / \lambda$ leads to

$$
-\lambda^{2} X+(B+\lambda n)(d X / d(1 / \lambda))=0 \quad \text { whence } \quad d X / d(1 / \lambda)=\lambda^{2}(B+\lambda I)^{-2} E .
$$

The value of ϕ for a vector X close enough to zero is equal to that of $2 F+\phi_{0}$, that is,

$$
\phi=X^{\mathrm{T}} B X-2 X^{\mathrm{T}} E+\phi_{0},
$$

whence

$$
\begin{aligned}
d \phi / d(1 / \lambda) & =2 X^{\mathrm{T}} B(d X / d(11 \lambda))-2 E^{\mathrm{T}}(d X / d(1 / \lambda)), \\
& =2 \lambda^{2} E^{\mathrm{T}}(B+\lambda l)^{-1} B(B+\lambda)^{-2} E-2 \lambda^{2} E^{\mathrm{T}}(B+\lambda)^{-2} E .
\end{aligned}
$$

For λ increasing to infinity, $(B+\lambda I)$ tends toward λI and $(B+\lambda I)^{-1}$ toward $(1 / \lambda) I$, so the first term is of $1 / \lambda$ order and tends to zero; the second term has a limit equalt to $-2 E^{\top} E$. Thence

$$
\begin{equation*}
\left[d \phi / d(1 / \lambda)_{-\infty}=-2 E^{\mathrm{T}} E\right. \tag{16}
\end{equation*}
$$

The remaining $p-2$ parameters have to be determined from ϕ_{λ} values computed for selected λ (such as the optimal λ of the previous iteration) [4].

Conclusion: Numerical Experience

These methods were applied to problems where the standard least squares method was very slowly convergent or failed to converge, such as the determination of interaction coefficients in liquid binary mixtures [5], the fitting of infrared absorption hand envelopes, or models for chromatographic peaks on experimental results [6].

The Marquardt-Meiron method always exhibited a very good convergence (often superior to that of Levenberg's) in the most difficult cases, where the quadratic approximation of the least squares criterion function was very poor due to the high nonlinearity of the y functions used, even for an initial guess of the parameters far from the true value.

References

1. K. Levenberg, Quart. Appl. Math. 2 (1944), 164.
2. D. W. Marquardt, J. Soc. Ind. Appl. Math. 11 (1963), 431.
3. J. Meiron, J. Opt. Soc. Amer. 55 (1965), 1105.
4. J. Ptitha and R. N. Jones, Canad. J. Chem. 44 (1966), 3031.
5. B. Aubineau, Thése de Docteur-Ingénieur, Université de Paris VI, Paris, 1973, CNRS A.O. 8728.
6. F. Hapfner and J. P. Petit, International Congress, "Use of Electronic Computers in Chemical Engineering," Paris, 1973.

Recerved: December 10, 1974; revised: May 17, 1976
Henry Brusset Dominique Depeyrb Jean-Pierre Petit Francols Haffner

