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Note 

On the Convergence of Standard and 
Damped Least Squares Methods 

While the use of least squares minimization is quite commonly used, the Newton- 
Raphson algorithm often fails to converge or converges very slowly for nonlinear 
problems. The convergence is known to become poorer with increasing non- 
linearity, and an important increase in the quality of the initial estimate of the 
parameters is needed to reach the solution. In problems where parameters appear 
in highly nonlinear functions of exponential, logarithmic, or hyperbolic types, 
there is a strong need for a better understanding of the reasons for this divergence 
phenomenon and for methods to overcome it and ensure convergence. 

LEAST SQUARES METHOD 

Let c(X, t) be the discrepancy at point t between the experimental value ye(t) 
and the value of the approximation function y(X, 1). The method aims to minimize 
the least squares criterion function, 

+W) .= j [4X r)l* dt .., j [ye(t) - I@, t)l* dr, 

with respect to the vector of parameters X (integral signs being taken in the Stiljes 
sense), or to solve the system 

S+ISXj = 0, Vj, (2) 

which is equivalent to (1) in any domain where ~,4 is unimodal. 

First approximation. System (2) is expanded to the first order in the Taylor 
sense to give 

-2 j [,(A’, t) - T; $ (A’, t) dxi] [g (X, t) f T & (XT I) d-yi] dt 7 0, Vi * 

(3) 
Second approximation. In (3) we set 

(S*y/SXi SXj)(X, 1) z 0, Vi,j. 
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This second approximation is equivalent to the following statement. y is approxi- 
mated in the neighborhood of y(X, t) by a function linear with respect to the set 
of xj (cf. Geometric Properties), which has the same first derivatives at the point 
(X, 0. 

The system then takes the form 

or, in a matric form, 3 dX = E, with 

bij = 1% (X, 1) $ (x, t) dt; e3 = I 
SY c(X, t) sx, (A’, t) dt. (5) 

Note. When a discrete summation is used, it is customary to define 

then B = ATA and E = ATc, which provides a simple means to compute B and E. 

GEOMETRIC PROPERTIES 

We define 

thus 

(1) 

The resolution of BX = E is equivalent to the minimization 

F(X) = @‘=BX - XTE, 

the derivatives of which are, at the point X = 0, 

of the quadratic form 

(8) 

g=(BX-E)i =-,J,gdt=J~&dt, 
I x-o 

62F -= 
6Xi 6Xj 

bii = S ~ ~ dt = S ~ ~ dt. 
(9 
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The geometric interpretation follows by comparing F(X) and t[+(X) - +5(O)]; the 
surface 4, known only in X = 0, is replaced by a paraboloid 2F + C&O) with the 
same tangent plane and the same curvature in any plane containing X = 0; the 
minimum of the paraboloid is them searched for (Fig. 1). 

FIG. 1. Surface 4, the minimum of which is shown by solid lines. The approximation para- 
boloid is the dashed line. The figure shown Xmln , the true minimum; X0, the computed X; and 
NX,), the corxsponding 4. The starting point of the iteration is (0,O) with the +0 value for the 
criterion function. 

PROPERTIES OF THE B MATRIX 

(1) B is a real symmetric matrix. This clearly results from Eq. (5), 

bdj = bji e 

(2) Diagonal elements of B are positive or zero (Eq. (5)): 

bii = j- (6y/6~,)~ dt. 

(3) B is nonnegative definite. 

Let X0 be a solution of F(X) minimum and X = X0 + V; then 

F(X) = BK, + J’F BP’, + VI - Wo + J’l’ E, 
= &XoTBXo + 4 VTBXo + &XoTB F’ + 4 VrBY - XOTE - V’E, 
= F(X,) + j&TBV + VTBXo) + lVTBV - FE. 
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Since B is symmetric, XOTB V = VTBXo , so that 

F(X) = F(XJ + &VTBV + VT(BXo - E), 

and BX, - E = 0 since X,, is a solution of F(X) minimum; so 

VTBV = 2[F(X) - F(X,)] > 0, 

since F(X,) minimizes F(X). Moreover, B can always be written as 

B = TTST, (10) 

where T is the orthogonal matrix of eigenvectors and S is the diagonal matrix 
of the eigenvalues si (all s;s being real, since B is real symmetric). If there is a 
vector V # 0 such that VTBV = 0, then (TV)T S(TV) = UWJ = Cc uiasi = 0, 
which shows that at least one So is zero. Then any vector X = X0 + k V is a solution 
of the system and F(X) has another parabolic direction in the X space. 

MINIMIZATION METHODS OF LEVENBERG AND MARQUARDT-MEIRON [l, 2,3] 

The aim of these methods is to modify the quadratic form F to bring its minimum 
nearer of the minimum of +, while keeping, as much as possible, the properties 
of B. They use the fact that at least the gradient is known to be a direction where + 
is decreasing. 

These modifications are (A 2 0): 

Bh = B + XI &eve&erg), (11) 

Diag(B)-1/a BA Diag(B)-l12 = Diag(B)-l/2 B Diag(B)-li2 + AZ (Marquardt), (12) 

BA = B + h Diag(B) (Meiron). (13) 

It is clear that 

(1) Meiron’s and Marquardt’s transformations are identical; 
(2) Marquardt’s transformation is a Levenberg’s transformation in a param- 

eter space normed by Diag(B)-lla (if bid # 0, Vi). 

So we can systematically reduce the study to that of Levenberg’s method 
whenever all bii’s are nonzero. 

PROPERTIES OF THE MATRIX BA 

Since the matrix B can be written as PST where T is the orthogonal matrix 
of eigenvectors, Eq. (11) becomes 

B,=T=STf~=TWT+hTrT=Tr(S+XI)T. (14) 

581/22/4-10 
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Hence, the matrix BA has the same eigenbase as B and its eigenvalues are Si + A; 
but the Si values are positive or zero, since the quadratic form associated with B 
is nonnegative definite; the eigenvalues of BA are hence strictly positive for h 1 0, 
and the associated quadratic form is positive definite. 

CA~E~OF SINGULARITY FOR B AND CONSEQUENCESIN THEVARIOUS METHODS 

We shall call “local” singularities those occurring for particular choices of the 
vector of parameters X, and “intrinsic” those.occurring for any X. 

The singularities of B put a stop to the standard least squares method; two types 
of singularities can be distinguished. 

(1) There is a subspace P of the parameter space X such that 

Z;P pj(8yI8xj)(X, t) z 0, Vt with 1 [(6y/6Xj)(X, t)]” dt f 0, Vj. 
j 

Then, all the parameters of the subspace P are not simultaneously discernible; 
or, in other words, there is an infinity of vectors X, solutions of the minimization. 

If the singularity is local or intrinsic, Levenberg’s or Marquardt-Meiron’s 
methods still lead to a solution since the linear dependence of the lines of the 
matrix B is destroyed in B,, . If the singularity is a local one, the normal convergence 
process will start again when X has left the locus of singularities; if the singularity 
is intrinsic, at least one parameter is not independent of the others; the computed 
solution will minimize C$ but will not be the only one because of the ill choice of 
parameters. 

(2) There is at least one parameter xI; such that 

@Y/W(X, t> = 0, vc 

then y is independent of xk for the choice of parameters X. In this case, we have 
to study the methods separately, since Levenberg’s method adds a X to the diagonal 
term and leaves no singularity, Meiron’s method leaves the kth line equal to zero, 
and there is no possible normalization in Marquardt’s method since 

h,, = J [@y/6x,)(X, r)]2 dt = 0. 

Yet, it must be considered that 

if the singularity is intrinsic, y is independent of xlr, which makes this 
parameter meaningless; 
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if the singularity is local, a minimum in xlc is reached. It seems consistent not 
to change xk , and since b,, = 0, Vi and ek = 0, one just needs to Set b,, = 1. 
The kth equation of (V) is dxk = 0; the other equations are independent of dxk 
since bki = 0 and can be solved if there is no other such singularity; otherwise, 
the same process will be repeated. 

Note. Even very simple approximation functions y may exhibit such singu- 
larities, which make their linearized approximation from the first derivatives give 
a singular B matrix. For instance, let us consider 

y  = x,eCZt + x3 , 

Sy/Sx, = e+, 

-Sy/Sx, = xltexzt, 

sypx, = 1. 

Let x2 = 0; then 6y/6x, - 6y/6x, = 0, a singularity of the first type. 
Let x1 = 0; then 6y/6x, -: 0, a singularity of the second type. 
Though the y function is quite elsewhere, whenever the result of an iteration 

step leads to a solution in a vicinity of XI = 0 or X2 = 0, the standard least 
squares method meets a nearly singular matrix (thus a very ill-conditioned system 
for inversion), and gives a poor convergence or a divergence in the iteration 
process. 

Hence, the standard least squares method must not be used for nonlinear 
problems without a careful examination of the possible errors arising from local 
incompatibility between the approximation function y and the basic assumptions 
of the method. 

Locus OF THE SOLUTIONS IN THE X SPACE 

The hyperquadratics of the X space defined by 

F,(X)= &Y=BAX- X=E = 0 

form a linear punctual sheaf, the basic hyperquadratics of which are 

4X'BX- X=E = 0, 
$x=1x = 0. 

The solutions of the minimization of F,(X) are the centers of the hyperquadratics. 
Their locus has, for asymptotic directions, those centers which make the poly- 
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nomial of the highest degree terls equal to zero. The locus is also the axis of the 
hyperparaboloids in the sheaf, defined by the nullity of the determinant associated 
to B,, , which is an algebraic equation of degree n (equal to the number of param- 
eters), and with all its roots real, h = -si (cf. properties of the matrix B). Hence 
they are the directions of the eigenvectors of B. These eigenvectors form an ortho- 
gonal base of the normed space of X vectors. 

Therefore, the locus of the centers is a skewed algebraic curve of degree n, with n 
real asymptotes. Since the s,‘s are positive or zero, all the solutions for h 3 0 are 
on a same continuous branch of the curve. 

In a case with two parameters, hyperquadratics reduce to tonics and the locus 
of the centers is the conic “of the nine points”; since the asymptotes are real, it is 
a hyperbola (Fig. 2). 

In the same way, with three parameters, the locus of the centers of quadratics 
belonging to a linear sheaf is a skewed cubic curve. 

FIG. 2. Minimization on two parameters (heptane-than01 mixture from [5]) showing the 
hyperbola locus of the solutions. Dotted lines are iso-4. The function is not defined for A’, or xz 
negative. Underlined values are X’s. 

SELECTION OF THE OPTIMAL h VALUE 

Marquardt uses the smallest value of h giving a convergence; this leads to the 
largest iteration step, but not necessarily to the smallest 4h . It seems more advisable 
to select the value of h leading to the minimum of +,, . To do this, the general shape 
of the curves c#~(~/A) must be considered. It is to be observed that & corresponding 
to an infinite X is known to be the result of the previous iteration, and +,, is the value 
obtained for h = 0 by the standard least squares iteration. In the simple case of 
a unimodal $n function for 0 < A, three types of curves can occur (Fig. 3): 

(3e) There is no minimum and the standard method is optimal; 
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e !/A f ,,A g ,,A h l/A 
FIG. 3. (a, b, c, d): is& curves in a two-parameter space and locus of XA (0 < A); 0 is the 

origin of the minimization corresponding to A infinite and XA = 0. (e, f, g, h): corresponding 
4~ (l/A) curves. (a, c): standard least squares are optimal; (b, f): standard least squares converge, 
nonoptimal; (c, g): standard least squares diverge; (d, h): complex case where 4~(1/A) is not 
unimodal. 

(3f) there is a minimum and an optimal X value, though the standard least 
squares still converge since +m > CJ$ ; 

(3g) there is a minimum and an optimal h value; since &, < +0 the standard 
least squares diverge. 

If +A is not unimodal, there is an optimal (zero or nonzero) A, but the search 
will be much more complex. 

One method to find the optimal A is to approximate $A by a function with p 
parameters, the minimum of which can be computed readily enough. 

Two parameters can be determined by the conditions for h infinite. 

(1) + = 62 9 which is known; 

(2) kwww is readily computable since the initial system, Eqs. (11) 
and (5), gives 

(B + AZ) X = E or X = (B + xr>-l E, 

and derivation with respect to I/h leads to 

-x2X + (B + hl)(dX/d( l/h)) = 0 whence dX/d(l/h) = h2(B + xI)-2 E. 

The value of 4 for a vector X close enough to zero is equal to that of 2F + $,, , 
that is, 

whence 
4 = XTBX-22XTE+ c$~, 

d$/d( I/h) = 2xTB(dX/d( 1 ‘A)) - 2ET(dX/d( I /A)), 

= 2ii2ET(B + iU)-l B(B + xI)-2 E - 2X2ET(B + xr)-2 E. 
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For X increasing to infinity, (B + AZ) tends toward AZ and (B $ AZ)-’ toward 
(I/h) Z, so the first term is of l/h order and tends to zero; the second term has a 
limit equalt to -2ETE. Thence 

[d&d( l/A)-= = -2ETE. (16) 

The remaining p - 2 parameters have to be determined from #A values computed 
for selected h (such as the optimal h of the previous iteration) [4]. 

CONCLUSION: NUMERICAL EXPERIJZNCE 

These methods were applied to problems where the standard least squares 
method was very slowly convergent or failed to converge, such as the determination 
of interaction coefficients in liquid binary mixtures [5], the fitting of infrared 
absorption hand envelopes, or models for chromatographic peaks on experimental 
results [6]. 

The Marquardt-Meiron method always exhibited a very good convergence 
(often superior to that of Levenberg’s) in the most difficult cases, where the 
quadratic approximation of the least squares criterion function was very poor 
due to the high nonlinearity of the y functions used, even for an initial guess of 
the parameters far from the true value. 
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